Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines
نویسندگان
چکیده
We examined differences in cellular responses to multi-walled carbon nanotubes (MWCNTs) using malignant pleural mesothelioma cells (MESO-1), bronchial epithelial cells (BEAS-2B), neuroblastoma cells (IMR-32), and monoblastic cells (THP-1), before and after differentiation. MESO-1, BEAS-2B and differentiated THP-1 cells actively endocytosed MWCNTs, resulting in cytotoxicity with lysosomal injury. However, cytotoxicity did not occur in IMR-32 or undifferentiated THP-1 cells. Both differentiated and undifferentiated THP-1 cells exhibited an inflammatory response. Carbon blacks were endocytosed by the same cell types without lysosomal damage and caused cytokine secretion, but they did not cause cytotoxicity. These results indicate that the cytotoxicity of MWCNTs requires not only cellular uptake but also lysosomal injury. Furthermore, it seems that membrane permeability or cytokine secretion without cytotoxicity results from several active mechanisms. Clarification of the cellular recognition mechanism for MWCNTs is important for developing safer MWCNTs.
منابع مشابه
Multi-walled Carbon Nanotube-CO-NH(CH2)2NH-SO3H: A New Adsorbent for Removal of Methylene Blue from Aqueous Media
In this study, Multi-walled carbon nanotube-CO-NH(CH2)2NH-SO3H was prepared through the functionalization of commercial multi-walled carbon nanotubes in three steps and then it was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). In addition, the adsorption of Methylene Blue was investigated by using these nanotubes. In order to remo...
متن کاملAdsorption of Humic Acid On Multi-Walled Carbon Nanotubes
Background: Natural organic matters (NOMs) have the main role in formation of trihalomethanes. These compounds are in natural water sources due to biological activities. In the presented study, adsorption and separation of humic acid as an index of natural organic matters using multi-walled carbon nanotubes is evaluated. Methods: The experiments were carried out in bath adsorption reactors wit...
متن کاملIncreasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملComparison of Buspirone adsorption by modification of carboxylated multi-walled carbon nanotube
To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targete...
متن کاملA RIGOROUS COMPARISON OF METHODS FOR MULTI-WALLED CARBON NANOTUBES PURIFICATION USING RAMAN SPECTROSCOPY
Multi-walled carbon nanotubes (MWNT’s) were synthesized using chemical vapor deposition (CVD) method in a fluidized bed reactor under the flow of methane and hydrogen gases. A Cobalt-molybdenum/magnesium oxide (Co-Mo/MgO) nanocatalyst was used as the catalyst of the process. The samples were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The effects of d...
متن کامل